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ABSTRACT

In this work, loss rate and delay of non-Poisson machine-to-machine (M2M) traffic in LTE networks have been studied. In
contrast to prior works which used Poisson process model for M2M traffic in their analysis, more realistic traffic models
have been proposed which follow the traffic patterns of M2M communications reported lately by 3GPP. Markov Modulated
Poisson Process (MMPP) and an approximated Coupled MMPP (CMMPP) are adopted for modeling the uncoordinated
and coordinated M2M network traffic, respectively. Also, Fixed-Access Grant Time Interval (AGTI) algorithm is used as
a low-overhead cluster based scheduling algorithm to serve packets. Using some approximations, we first derive analytical
results for the delay violation and packet loss probabilities of M2M traffic in LTE networks in different scenarios. We then
investigate the effect of buffer size on the quality of service of M2M user equipments (UEs). Specifically, in contrast to
uncoordinated traffic model, it is shown that for the coordinated traffic model increasing the buffer size above a threshold
is not effective in decreasing the loss probability of UEs. Simulation results are provided to justify the analysis and the
effect of buffer size on delay and loss probabilities.
Copyright c© 0000 John Wiley & Sons, Ltd.

1. INTRODUCTION

Machine-to-Machine (M2M) communications is an insep-
arable part of the modern communication networks to
offer services such as Internet of things (IoT), E-Health,
fleet management, and monitoring systems. The number of
M2M devices connected to cellular networks worldwide
is estimated to be more than hundreds of millions and
in comparison to traditional communication devices like
smartphones it is growing at a rapid pace [1, 2]. On the
other hand, Long Term Evolution (LTE) networks provide
an appropriate infrastructure for M2M communications
due to their advantages such as ubiquitous coverage, low
latency, high capacity, and all-IP technology [3]. There-
fore, it is expected that M2M traffic comprises a consider-
able volume of the LTE networks traffic in the near future.

In order to accommodate M2M communications in LTE
networks, it is important to consider the peculiarities of this
type of communications as LTE networks are inherently
developed for Human-to-Human (H2H) communications.
Some of these peculiarities include high uplink to
downlink traffic ratio, small packet size, less mobility,
diverse quality of service (QoS) requirements for different

M2M applications, the huge number of devices trying
to access the network, and possible synchronization of
UEs’ activation which intensifies the burstiness of the
aggregated traffic [1]. Dealing with synchronized traffic
is one of the important issues in the analysis of M2M
communications which is addressed in this paper. Due
to these peculiarities, efficient scheduling algorithms in
Radio Access Network (RAN) are required to support
M2M user equipment (UE) and avoid QoS degradation of
H2H communications.

The scheduling algorithm is a key component of
efficient resource management in the RAN of LTE
networks. Resources can be scheduled for each UE
individually or for each cluster of UEs which have the
same QoS requirements. The former performs better
in terms of efficient utilization of RAN resources,
however, suffers from the signaling overhead and high
complexity since it needs the channel condition and delay
requirements of each UE. The latter scheme, which is
also adopted in this paper, does not need to exchange
control data with each UE individually and allocates
resources to each cluster of M2M UEs. In this work,
Fixed-Access Grant Time Interval (AGTI) is used as a

Copyright c© 0000 John Wiley & Sons, Ltd. 1
Prepared using ettauth.cls [Version: 2012/06/19 v2.10]



promising cluster based scheduling scheme. AGTI requires
very low signaling overhead and supports the required
QoS of the clusters provided that UEs have been clustered
appropriately [4–7].

On the other hand, the performance analysis of
scheduling algorithms depends on the assumed traffic
model of UEs. The traditional Poisson process traffic
modeling which is typically assumed in the designing of
the scheduling algorithms, is not accurate for modeling
traffic sources that show spatial and temporal correlation as
in the case of M2M UEs [8]. Since each UE may operate
in regular and alarm modes, Markov Modulated Poisson
Process (MMPP) is a good suggestion for modeling this
traffic behavior [8–10]. Specifically, for the uncoordinated
traffic in which the UEs of each cluster operate in
an asynchronous manner, the generated traffic by each
cluster can be modeled by a number of separate MMPPs.
In contrast, for the coordinated traffic the UEs may
operate synchronously when they respond to events in
a coordinated manner. In this case, the behavior of the
cluster’s traffic can be characterized by Coupled Markov
Modulated Poisson Process (CMMPP) [8, 10].

In this paper, assuming fixed AGTI scheduling
algorithm, the QoS of UEs in terms of delay violation
and packet loss probabilities for uncoordinated and
coordinated M2M traffics are analyzed. The MMPP and
an approximated CMMPP are considered to model the
traffic of each cluster in the uncoordinated and coordinated
scenarios respectively. Finally, the MMPP/D/1/K queueing
model is used to evaluate delay and packet loss for M2M
UEs for different buffer sizes.

The rest of this paper is organized as follows. After
reviewing some related works in section 2, the system and
traffic models are presented in section 3. In section 4, the
performance evaluation of the system for uncoordinated
traffic is discussed. In section 5, by adopting a simplified
traffic model the system performance for coordinated
traffic is analyzed. Numerical studies to justify the analysis
and discussion are provided in section 6 before concluding
in section 7.

2. RELATED WORK

Delay-aware and channel-aware M2M scheduling schemes
over LTE networks are discussed in [3, 11] where packets
are prioritized according to the remaining tolerable delay
and reported channel quality by each UE. Due to small size
packets in M2M communications, these schemes incur a
high signaling overhead especially for a scenario with a
large number of UEs. Considering this issue, some works
propose the cluster based scheduling in which UEs are
clustered according to their required QoS. In the cluster-
based approach, exchanging of the control information for
each UE is not required and packets could be served using
a deterministic scheduling scheme [2, 4–7].

In [4, 5] assuming a constant time interval for packet
arrival, UEs are clustered according to their required
QoS where a priority and a fixed AGTI are assigned to
each cluster. This simplifying assumption is in contrast
to the random nature of M2M traffic [2, 6, 7]. That is,
the performance of scheduling schemes strongly depends
on the offered traffic behavior of UEs and hence more
attention is required in M2M traffic modeling.

In [7], M2M traffic is modeled by a Poisson process
and the probability of the delay violation for a given
threshold in single-class and multi-class scenarios are
analyzed and evaluated by simulation. Although, Poisson
process is a typical model for the traffic modeling of H2H
communications, recent studies [8–10] and 3GPP reports
[12] show that individual M2M UEs and their aggregated
traffic do not follow Poisson process model. Specifically,
UEs may operate in the regular and alarm modes where the
distribution of packets’ inter-arrival times and their sizes
are different in each mode [8–10]. Regarding a single UE
traffic, at least two Poisson processes with different rates
are required to efficiently model the generated traffic in the
uncoordinated model. However, in the coordinated model,
M2M UEs exhibit temporal and spatial synchronism [8]
and more complicated models should be used.

Considering these facts, the 3GPP proposes two traffic
models for the aggregated traffic of M2M UEs named
as the model I and model II. The arrival times of
packets in these models follow uniform(0,1) and Beta(3,4)
distributions, respectively [12]. Uniform distribution is
used to model the traffic in the uncoordinated model and
beta distribution is used for the coordinated model in
which UEs change their traffic mode synchronously, i.e.,
UEs go to the alarm mode synchronously. M2M traffic
modeling is also discussed in [8, 10], where traffic is
modeled by the MMPP and the CMMPP for uncoordinated
and coordinated models, respectively. Also, it is shown that
these models converge to the corresponding model I and
model II of the 3GPP.

Most of the existing works on scheduling M2M traffic
over LTE networks do not consider these peculiarities of
M2M traffic. In this paper, more realistic traffic models are
used in analyzing the AGTI scheduling scheme.

3. SYSTEM MODEL

3.1. System model and problem statement

A single cell of an LTE network is considered in which
M2M UEs directly connect to the eNB of the cell. The eNB
schedules UEs in a centralized manner. The bandwidth
of the cell is divided into some sub-channels where
m sub-channels are dedicated to M2M communications.
Each LTE frame consists of the corresponding spectrum
resources of these m sub-channels for the duration of 10
ms. Each frame, in turn, is divided into 10 sub-frames
called as the transmission time interval (TTI) with the
duration of 1ms. Hence the smallest allocable resource
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Figure 1. System Model: eNB assigns the registered UEs to different clusters according to their traffic characteristics and QoS
requirements. Resources are assigned to UEs according to the assigned service time interval to the corresponding cluster.

element to each UE in a service time consists of one sub-
channel in the frequency domain and one TTI in the time
domain.

The scheduler assigns the registered UEs in appropriate
clusters according to their traffic characteristics and QoS
requirements. It is assumed that UEs are clustered into
two different groups as it is shown in Fig. 1. Also, an
appropriate service time interval, Tg , is assigned to each
cluster by the eNB according to its requested QoS, e.g.,
T 1
g = 20 means that UEs of cluster 1 are served every 20

TTI. The required QoS for UEs in cluster i is specified by
the maximum tolerable delay for data transmission and is
denoted by ∆i. That is:

Pr(Delay > ∆i) < δi, i = 1, 2 (1)

where δi is a service level parameter.
It is assumed that each UE operates in regular and alarm

modes. When no event is detected in the vicinity of a UE,
the UE operates in the regular mode and its generated
traffic is a low rate periodic traffic with long inter-arrival
time between two consecutive requests. Upon detecting an
event, the UE goes to the alarm mode and requests are
generated in a more intensive way. Hence, the traffic of
each UE cannot be modeled by a single Poisson process

as discussed in [8–10]. Furthermore, the traffic of each UE
has spatial and temporal correlations with the nearby UEs.

The objective is to find out the effects of non-Poisson
traffic model on the delay violation and packet loss
probabilities in a specific service time duration. For
this purpose, proper modeling of the M2M traffic and
considering the possible temporal and spatial correlation
between the UEs are the key factors which are discussed in
the next subsection.

3.2. M2M Traffic Modeling

The traffic of each UE is characterized by the arrival
process of its requests. Let λRi and λAi denote,
respectively, the arrival rates of UEs’ requests in regular
and alarm modes for cluster i. Each UE switches between
these modes and it is assumed that the interval times
between the mode switching follows an exponentially
distributed random variable with parameter λs.

The transition matrix of mode switching for UEi is
denoted by Pi. To consider the spatial correlation of
UEi’s traffic, parameter αi, 0 ≤ αi ≤ 1 is dedicated to
this UE according to its distance to the source of events.
This parameter would be greater for UEs which are
located closer to the source of events. On the other hand,
the temporal correlation in traffic generation of UEs is
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modeled by a piecewise constant function θ[t], i.e., its
value is constant in each LTE frame. In other words, θ[t]
shows the degree of temporal correlation of UEs’ traffic at
time instance t.

Summing up, the synchronicity parameter of UEi with
other UEs at time instance t, θi[t], is given by θi[t] =
αiθ[t]. Having the synchronicity parameter of UEi, the
transition probability matrix of this device at time t is given
by (2).

Pi[t] = θi[t]PC + (1 − θi[t])PU (2)

where PC and PU are given by:

PC =

[
0 1
1 0

]
, PU =

[
1 0
1 0

]
. (3)

In (3), PC and PU are the transition probability
matrices for fully coordinated and fully uncoordinated
UEs, respectively. The elements of row i and column j of
these matrices show the transition probability from state
i to state j where regular and alarm modes of UEs are
denoted by indices 1 and 2, respectively. That is, PC12

shows the transition probability from regular to alarm
mode. A fully coordinated UE oscillates between the
alarm and regular modes at each transition point and an
uncoordinated UE stays in the regular mode permanently.

4. UNCOORDINATED TRAFFIC MODEL
WITH INFINITE BUFFER

In the uncoordinated model, the traffic of each UE is
generated independently from other UEs, so it follows a
constant traffic behavior over the time. In this case, the
aggregated traffic of UEs follows Model I [12] of the 3GPP
which corresponds to Uniform(0, 1) probability density
function (pdf) as discussed in [10]. Hence, the temporal
correlation, θ has the uniform pdf in the duration that each
UE is active, i.e., θ[t] = 1 for all t. Also, the transition
probability matrix of each UE is time independent and
hence the traffic generation can be modeled by a two-
state MMPP as shown in Fig. 2. In Fig. 2 R and A show
regular and alarm modes, respectively. Notice that in the
regular and alarm states the traffic of each UE is generated
according to Poisson processes with parameter λR and λA,
respectively.

On the other hand, the requests of each UE are served
according to the fixed-AGTI scheduling scheme which
allocates one RB to each UE in constant time intervals.
That is, the service rate for each UE is constant. Therefore,
MMPP(2)/D/1 queueing model can be used for system
performance analysis in this scenario.

A simple and efficient approximation for MMPP(2)/D/1
queuing model for the Continuous Time Markov Chain
(CTMC) is proposed in [13]. The transition rate matrix
for the corresponding CTMC model of our Discrete Time

PRA

PAR

PRR

Figure 2. Traffic generation of each UE in the uncoordinated
scenario is modeled by a two-state MMPP.

Markov Chain (DTMC) model is given by [14]:

R = λc(P − I), (4)

where R, I , and λc are, respectively, the infinitesimal
generator matrix which shows the transition rate between
states, the unity matrix, and the rate of changes in the
system. The system is observed at each service time and
the transition between states happens at switching time,
hence we have:

λc =
Tg

Ts
, (5)

where Tg and Ts are, respectively, service (grant) time and
the mean switching time, i.e., 1 LTE frame.

Let W (x) denote the Cumulative Distribution Function
(CDF) of each request waiting time in the MMPP(2)/D/1
queuing model. Then, the complement CDF, V (x) =
Pr(W > x) = 1 −W (x) is approximated by:

Vappr(x) = a1e
b1x + a2e

b2x, (6)

where x is the waiting time in terms of the number of
service times that each request waits in the queue. The
Laplace transform of V (x) in (6) is given by:

V̂appr(s) =
a1

s− b1
+

a2

s− b2
, (7)

where a1 > 0, a2 > 0, and b2 < b1 < 0 and b1 and b2
are asymptotic decay rates parameters and a1 and a2 are
asymptotic constants. In fact, b1 and b2 are the first and
second negative poles of V̂ (s) and are computed using (8).

det[sI +R− Λ + Λe−s] = 0, (8)

where matrix R is the infinitesimal generator matrix as
before and Λ is the arrival rate matrix and is defined by:

Λ =

[
λR 0
0 λA

]
. (9)

Therefore, the waiting time for each request in the
uncoordinated model can be found when buffer size is
infinite.
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5. SYSTEM PERFORMANCE
EVALUATION FOR COORDINATED
TRAFFIC MODEL

In the coordinated model, UEs mutually affect each other’s
traffic behavior. So, each UE affects the traffic pattern
of adjacent UEs and its traffic is affected by them.
Coupled Markov Modulated Poisson Process (CMMPP)
is proposed to model these bidirectional connections in
each cluster. However, as the number of UEs in the
cluster is increased, the number of interconnections among
UEs increases rapidly and subsequently the complexity of
CMMPP grows excessively.

In order to find out a more scalable and tractable traffic
model for analysis, the effect of these interactions in
the developed approximated MMPP traffic model of each
UE is considered. Specifically, according to the Model II
of 3GPP, the aggregated traffic of the coordinated UEs
follows Beta(3, 4) probability distribution function (pdf)
[12]. Furthermore, in [8,10] it is shown that the aggregated
traffic of UEs which individually follows Beta(3, 4) pdf,
is the same as the aggregated traffic in the coordinated
model. Hence, to take into account this behavior in each
UE traffic model, an approximation of the Beta(3, 4)
pdf is considered in the θ function which reflects
the temporal correlation of UEs’ traffic. This temporal
correlation directly affects synchronicity parameter which
in turn constructs the transition probability matrix and
subsequently affects the UEs’ traffic. Therefore, the traffic
of each UE in the coordinated scenario could be modeled
by an MMPP where its transition matrix is varying over
the time. That is, we approximate the initial CMMPP
by an approximated MMPP model in which each UE is
independently modeled by an MMPP. Accordingly, the
MMPP/D/1/K queueing model can be used to investigate
the QoS of each UE in subsequent analysis.

In the following subsections, a numerical approximation
of MMPP/D/1/K queueing model is applied to calculate
waiting time and packet loss probabilities. Then an
illustrative example is provided in order to exemplify the
process of traffic modeling and performance evaluation.

5.1. Approximation of Coordinated Traffic Model

In the coordinated model, the transition probability matrix
of each UE follows Beta(3,4) pdf in time. This pdf
can be approximated by piecewise constant function in
consecutive short time intervals or slots. The transition
probability matrix of the corresponding MMPP in each slot
then would be constant.

Let the total activation interval of coordinated UEs,
[0, T ], be divided into z = T

∆t
time slots of duration ∆t,

and assume that the transition matrix ofUEi during the jth

slot, [(j − 1)∆t, j∆t], is constant. Therefore, the traffic
of each UE can be modeled by z two-state MMPPs in
consecutive time slots as it is shown in Fig. 3. To ensure
that this model follows Beta(3,4) distribution over the time,
the sojourn time in each MMPP and then transition to the

next MMPP should be adjusted properly. In the following
the corresponding MMPP of time slot j is denoted by
MMPPj and the sojourn time of the system in this
MMPP is denoted by ∆t.

Notice that the system would be at MMPPj for
( ∆t
Ts

− 1) LTE frames and then moves to the next MMPP at
∆t
Ts

th
transition time. Hence, the probabilities of staying in

current MMPP and moving to the next MMPP are given by
1 − Ts

∆t
and Ts

∆t
, respectively. For example, if Ts = 1 LTE

frame, ∆t = 50 LTE frames, and the pdf of Beta(3, 4)
is approximated by a piecewise constant function with
z = 20, then the probabilities of staying in current MMPP
and moving to the next MMPP would be 49/50 and 1/50,
respectively.

As an illustrative example consider a simple scenario
in which two UEs are served in a cluster in an LTE cell
and the input traffic lasts for 100 LTE frames or two slots.
Also, assume that the temporal correlation is approximated
by 0.6 and 0.2 in slot 1 and 2, respectively. The spatial
correlations for UE1 and UE2 are 0.5 and 0.3. Hence, the
transition matrices for UE1 and UE2 in slots 1 and 2 are
given by:

P1[1] =

[
0.7 0.3
1 0

]
P1[2] =

[
0.9 0.1
1 0

]
P2[1] =

[
0.82 0.18

1 0

]
P2[2] =

[
0.94 0.06

1 0

]
.

The corresponding approximated traffic model for UE1

in the activation period is depicted in Fig. 4 as a 4-state
MMPP. In this figure, Ri and Ai denote the regular and
alarm states in the ith slot respectively. A similar traffic
model can be approximated for UE2.

Now, assume that the packets’ arrival rates in regular
and alarm modes are λR = 0.0125 pkt/ms and λA =
0.125 pkt/ms and the system is able to serve one packet
every 20 ms. Also, we have λs = 0.1 switch/ms since the
switching among states occurs at the end of each LTE
frame. Adopting indices 1 to 4 for states R1, A1, R2, and
A2, the corresponding system transition and rate matrices
for UE1 are given by:

P1 =


0.686 0.294 0.02 0
0.98 0 0.02 0
0.02 0 0.882 0.098
0.02 0 0.98 0

 ,

Λ1 =


0.25 0 0 0

0 2.5 0 0
0 0 0.25 0
0 0 0 2.5

 ,
(10)

where Λ equates to Λ/µ since service time is assumed
unity.

5.2. Deploying MMPP/D/1/K for Analysis

MMPP/D/1/K queueing model can be deployed to evaluate
the probabilities of delay violation and packet loss for each
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Figure 4. Approximate traffic modeling of UE1 in the illustrative
example

UE using the approximated traffic model in the previous
section where K is the finite buffer size of each UE.
Also, notice that the results of this section can be used for
performance evaluation in the uncoordinated model with
finite buffer size as well.

In [15] a numerically efficient method for MMPP/D/1/K
queue via Padé approximation is proposed. A brief
overview of this method is provided in Appendix A.

Let the waiting time vector be defined as:

w(x) = [w1(x), w2(x), . . . , wn(x)], (11)

where wj(x) is the stationary probability that at an
arbitrary time the arrival process be in state j and the
waiting time of an unfinished work be at most x, i.e., the
waiting time be less than or equal to x service times. The
Laplace transform of w(x) is given by:

ŵ(s) = y0[sI +R− Λ + Λe−s]−1, (12)

Using the Padé approximation the irrational e−s term in
(12) can be approximated by R̂a(s)

Q̂a(s)
.

Now, the waiting time for MMPP/D/1/K is given by
(13):

w(x) =

{
y0,KB1e

A1xC1, 0 ≤ x ≤ K,

y0,KB1e
A1KeA2(x−K)C1, K ≤ x ≤ K + 1,

(13)
where y0,K represents the stationary probability that with
finite buffer of size K, at an arbitrary time the arrival
process be in state j and the number of packets in queue
be zero. Let π denote the stationary probability vector of
being in each state. we have:

y0,KB1e
A1KeA2C1 = π. (14)

In (14) A1, B1, A2, B2 are square matrices computed
according to the polynomials R̂a(s) and Q̂a(s), and C1

is a constant column matrix.
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Finally, the waiting time violation, V (x), is given by:

V (x) = Pr(W > x) = (1/ρ)(1 −W (x)), (15)

whereW (x) = w(x)e, 1/ρ is the fraction of times that the
server is busy, and e is the unitary column vector.

Also, the probability of loss, Ploss, is given by:

Ploss =
(π − w(K))Λe

λ̄
, (16)

where λ̄ = πΛ is the mean arrival rate and e is the unitary
column vector.

5.3. Illustrative Example

To follow how the MMPP/D/1/K analysis can be used for
computing the waiting time and packet loss probability, in
this subsection these performance metrics are computed
for UE1 and the corresponding cluster of the explained
example in section 5.1.

Using (10) and (4), the infinitesimal generator is given
by:

R =


−0.628 0.588 0.04 0

1.96 −2 0.04 0
0.04 0 −0.236 0.196
0.04 0 1.96 −2

.

Assuming o = 2 and l = 2 as the degrees of
polynomials R̂a(s), and Q̂a(s) in the Padé approximation
we have:

R̂a(s) = s2 − 6s+ 12
Q̂a(s) = s2 + 6s+ 12.

Also, we will have d = 3, and matrices Ĥa(s), and Ĝa(s)
using (21), and (27) are given by:

Ĥa(s) = s3 +


5.372 0.588 0.04 0
1.96 4 0.04 0
0.04 0 5.764 0.196
0.04 0 1.96 4

 s2 +


5.232 3.528 0.24 0
11.76 −30 0.24 0
0.24 0 7.584 1.176
0.24 0 11.76 −30

 s+


−7.536 7.056 0.48 0
23.52 −24 0.48 0
0.48 0 −2.832 2.352
0.48 0 23.52 −24

 ,

Ĝa(s) = s3 +


5.372 0.588 0.04 0
1.96 1 0.04 0
0.04 0 5.764 0.196
0.04 0 1.96 1

 s2 +


8.232 3.528 0.24 0
11.76 4 0.24 0
0.24 0 10.584 1.176
0.24 0 11.76 4

 s+


−7.536 7.056 0.48 0
23.52 −24 0.48 0
0.48 0 −2.832 2.352
0.48 0 23.52 −24

.

Then matrices A1, B1, A2 are computed using (23), (24),
and (26) respectively.

The corresponding probability vector π for infinitesimal
generator matrix R is given by:

π =
[
0.3864 0.1136 0.4554 0.0446

]
.

For K = 6, i.e., buffer size is 6, using (14) y0,K is given
by:

y0,K =
[
0.1331 0.0206 0.2487 0.0124

]
,

and the CDF of the stationary waiting time is:

Pr(W 1 ≤ ∆) =[
0.6309 0.7693 0.8559 0.9157 0.958 0.9891

]
,

∆ = 1, 2, ..., 6

where, W 1(x) is the waiting time for UE1. According to
(15), we have:

Pr(W 1 > ∆) =[
0.6306 0.3942 0.2463 0.1441 0.0717 0.0186

]
,

∆ = 1, 2, ..., 6.

The same procedures can be applied for the second UE,
and we have:

Pr(W 2 > ∆) =[
0.5252 0.2810 0.1571 0.0833 0.0379 0.0092

]
,

∆ = 1, 2, ..., 6.

Also, the probability that the weighted average waiting
time,WT , of the cluster exceeding a certain threshold, can
be derived. Since the fractions of packets which belong to
the first and second UEs are 0.56 and 0.44, respectively,
we have:

Pr(WT > ∆) =[
0.5842 0.3444 0.2071 0.1173 0.0568 0.0145

]
,

∆ = 1, 2, ..., 6.

Performing a simulation study, the corresponding
probabilities are also derived in a scenario in which packets
are generated for 10 periods or 100 seconds for a network
consists of two UEs with traffic parameters as mentioned
in section 5.1 and buffer size of 6. The network has
been realized for 1000 times. There is one frequency sub-
channel and UEs get service every 20 ms. The results are:
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Table I. Common parameter settings used for simulations

Parameter Value
m 10

λs
1 switch/LTE-frame

(0.1switch/ms)

αi
Normal(0.25,0.1) within

[0.02,0.48]
Number of UEs in each

cluster
100

Network Realizations 100

Pr(W 1 > ∆) =[
0.6158 0.3984 0.2545 0.1555 0.0865 0.0378

]
Pr(W 2 > ∆) =[

0.5018 0.2830 0.1622 0.0897 0.0455 0.0180
]

Pr(WT > ∆) =[
0.5664 0.3485 0.2148 0.1272 0.0688 0.0292

]
∆ = 1, 2, ..., 6.

Also, the probabilities of packet loss using (16) are
0.0279, 0.0135, and 0.0216 for UE1, UE2, and the
cluster, respectively. The simulation results show that the
corresponding values are 0.0253, 0.0112, and 0.0193,
respectively, which are consistent with the analysis.

6. RESULTS AND DISCUSSION

We simulate an LTE cell in three different scenarios where
10 sub-channels are shared between two M2M clusters.
Each cluster has 100 UEs which are served in specific
time intervals as it is shown in Fig. 1. In the first scenario,
the UEs of both clusters are uncoordinated and UEs have
unlimited buffer size. For the second and third scenarios,
assuming limited buffer size, the UEs operate according
to the uncoordinated and coordinated models respectively.
The general simulation parameters are summarized in table
I and the specific parameters for each scenario are given in
table II. The reported results are the average of 100 runs
where the corresponding 95 percent confidence intervals
are also reported.

6.1. Uncoordinated UEs with unlimited buffer

In the first scenario, the traffic of UEs are generated
according to the uniform traffic model with deterministic
service time intervals for each cluster. In Fig. 5 the
probabilities of delay violation in terms of required number
of service times using (6) and simulations are shown. As
this figure shows the results of approximate analysis are
consistent with the simulations.

The gap between the analytical and empirical results
backs to this fact that in our analysis it is assumed that
the traffic of each cluster is generated for infinite time and
the system is in steady state. However, in our simulation,
the 3GPP specification is followed for traffic generation
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Figure 5. Delay violation probability of uniform traffic for the
unlimited buffer size

Table II. Parameter settings for three different scenarios - S1,
S2, and S3 denote scenario 1, scenario 2, and scenario 3,

respectively.

Scenario Parameter Value
S1 and S2 θ uniform(0,1)

simulation time 60 s
S2 and S3 Buffer Size 2, 4, 6, 8

heavy loaded
(Tg, λR, λA)

20ms, 0.0125 pkt/ms,
0.125 pkt/ms

lightly loaded
(Tg, λR, λA)

20ms, 0.01 pkt/ms, 0.1
pkt/ms

S1
cluster 1

(Tg, λR, λA)
20ms, 0.0125 pkt/ms,

0.125 pkt/ms
cluster 2

(Tg, λR, λA)
40ms, 0.00625 pkt/ms,

0.0625 pkt/ms
θ Beta(3,4)

S3 simulation time 10 s

where the network is simulated for 60 seconds or 6000 LTE
frames (see table II). Hence, by increasing the simulation
time the results become more consistent.

Also, it has to be noticed that the system busy time
ρ = λ̄Tg is the same for both clusters. Recall that λc

indicates the rate of changes and using (5), we have λc = 2
and λc = 4 for cluster 1 and 2, respectively. As the rate
of changes is increased the UE has enough chance to be
in both traffic modes, so its traffic converges to a Poisson
process with the mean rate of two underlying Poisson
processes. Therefore, for a higher rate of changes, less QoS
degradation is expected as it is shown in Fig. 5.

6.2. Uncoordinated and Coordinated UEs with
limited buffer

In the second simulation scenario, it is assumed that UEs
have uncoordinated traffic with finite buffer size. The
results are reported for four different buffer sizes as given
in table II. The traffic of each UE is generated according
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Figure 6. Delay violation probability of coordinated and uncoordinated traffic models for lightly and heavy loaded scenarios with limited
buffer size

to the uniform(0, 1) pdf and the probability of delay
violation in terms of the number of required service times
are shown for light and heavy load clusters in Fig. 6 (a) and
Fig. 6 (c) respectively. In Fig. 7 (a), the loss probability for
different buffer sizes are shown for both light and heavy
traffic.

The gap between analytical and simulation results are
rooted in the approximation error with MMPP/D/1/K
model when we use Padé approximation. To improve
the precision we can increase the degree of polynomials,
o and l, in the Padé approximation at the cost of
higher computational complexity. In this simulation, both
parameters o, and l are equal to 2.

In the third simulation scenario, coordinated traffic
model is considered where the traffic of each UE follows
Beta(3, 4) distribution. UEs have a limited buffer size,
and packets are served in deterministic time intervals as
given in table II. The probability of delay violation for light
load and heavy load traffic are shown in 6 (b) and 6 (d),
respectively. As expected, compared to the uncoordinated

scenario the probabilities of delay violation are higher due
to the burstiness of the traffic in coordinated scenario.
Also, Fig. 7 (b) shows that the probability of packet loss
for the coordinated scenario is greater compared to the
uncoordinated scenario for all buffer sizes and network
load.

The performance gap between analysis and simulation
in this scenario is also partly rooted in the Padé
approximation. It also rooted in approximating the
Beta(3,4) pdf with a piecewise constant function which has
a constant value at each slot. Hence, the performance gap
can be decreased by selecting smaller values for ∆t at the
cost of increasing the number of model states and hence
the computational complexity. As a compromise between
precision and the computational complexity, the slot size is
set to 50 LTE frames.

6.3. Effect of buffer size

In Fig. 7 the effect of increasing the buffer size on
decreasing the packet loss probability is shown. From
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Figure 7. Loss probability of heavy and lightly loaded traffic for different buffer sizes

this figure, it is found that the improvement in the
loss probability saturates as the buffer size is increased
especially in the coordinated model. That is, in the
coordinated model increasing the buffer size does not
much help in decreasing the loss probability.

This observation suggests that the underlying traffic in
the coordinated traffic model has a heavy tail distribution
[16]. In this regard, a single M2M UE with parameters
α = 0.25 , λR = 0.0125 pkt/ms, λA = 0.125 pkt/ms, and
a UE with Poisson traffic and parameter λ = 0.035 pkt/ms
is considered. Note that the average number of generated
packets from both UEs is the same. In Fig. 8 the CDFs of
the inter-arrival times of the generated traffics are shown.
Note that the x-axis is logarithmically scaled. It is found
that in the coordinated traffic model, the probabilities of
observing short and long inter-arrival times are noticeable
compared to the Poisson traffic. This behavior justifies
why increasing the buffer size does not help much in the
coordinated model.

7. CONCLUSION AND FUTURE WORKS

MMPP and CMMPP are used to model the non-
Poisson M2M traffic of M2M communications in the
uncoordinated and coordinated models. The proposed
model is flexible and can be used to explain the recently
reported behaviors in the traffic of M2M communications.
Then Fixed AGTI is used as a simple scheduling scheme
in M2M communications to evaluate the delay and loss of
the packets in different scenarios using the machinery of
queuing theory. The analysis and numerical results show
that UEs with coordinated traffic model experience greater
delay violation and packet loss probabilities compared
to the UEs with uncoordinated traffic. In future works,
more sophisticated scheduling algorithms are considered
which take into account the channel or queue status of
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Figure 8. Empirical distributions of packet inter-arrival times for
coordinated traffic model and a Poisson process with the same

average number of arrivals.

UEs and investigate its effect on decreasing the incurred
packet delay and loss. Furthermore, by considering inter-
cluster scheduling and exploiting the shared resources
in a dynamic manner the loss probability could be
decreased. We did not consider specific priority for each
cluster which needs to use more sophisticated queueing
theory models in analysis. Another interesting research
direction is analyzing the coexistence scenario in which
H2H and M2M communications exploit from shared
resources and a group of uncoordinated or coordinated
UEs could take advantage of underutilized resources by
H2H communication in a dynamic manner.
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A. ANALYSIS OF MMPP/D/1/K QUEUE

The performance analysis of MMPP/D/1/K queue via Padé
approximation is proposed in [15]. In the following a brief
review of the performance analysis of MMPP/D/1/K queue
with First In First Out (FIFO) service discipline is given.
Consider an MMPP/D/1 queue with n states in which
the arrival rate in state j is denoted by λj . Let Λ be the
diagonal matrix of the arrival rates defined in (17) and R
is the infinitesimal generator matrix which determines the
transition rate among the states.

Λ =


λ1 0 ... 0
0 λ2 ... 0
...

... ...
...

0 0 ... λn

 . (17)

Let the waiting time vector of MMPP/D/1 queue be
defined as (18):

w(x) = [w1(x), w2(x), . . . , wn(x)], (18)

where, wj(x) is the stationary probability that at an
arbitrary time the arrival process be in state j and the
waiting time of an unfinished work be at most x, i.e.,
the waiting time be less than or equal to x service times.
Parameter n is the number of states. The Laplace-Stieltjes
Transform (LST) of the waiting time vector, w(x), is given
by:

ŵ(s) = y0[sI +D0 +D1e
−s]−1, (19)
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where D1 = Λ, and D0 = R− Λ. The jth element of
vector y0, y0j , is the stationary probability that at an
arbitrary time the arrival process be in state j and the
number of requests in queue be zero. Note that the e−s

term in (19) is the LST of the deterministic service time
with unity service rate.

The irrational e−s term can be accurately resubstituted
using Padé approximation by R̂a(s)

Q̂a(s)
where R̂a(s) and

Q̂a(s) are polynomials of degrees o and l, respectively and
o ≤ l. Hence (19) can be rewritten as (20).

ŵ(s) = y0[sI +D0 +D1
R̂a(s)

Q̂a(s)
]−1. (20)

It is assumed that the coefficient of the highest degree term
in Q̂a(s) is one, i.e., Q̂a(s) = sl + qa,l−1s

l−1 + ...+
qa,1s+ qa,0. Now, the n× n polynomial matrix Ĥa(s) is
defined as:

Ĥa(s) =(sI +D0)Q̂a(s) +D1R̂a(s) =

sdI +Ha,d−1s
d−1 + ...+Ha,1s+Ha,0,

(21)
where d = l + 1.

In the limited buffer case, MMPP/D/1/K, the waiting
time vector can be calculated by (22):

w(x) =

{
y0,KB1e

A1xC1, 0 ≤ x ≤ K,

y0,KB1e
A1KeA2(x−K)C1, K ≤ x ≤ K + 1,

(22)
where the jth element of vector y0,K , y0,K(j) is the
stationary probability that at an arbitrary time the arrival
process be in state j and the number of packets in the queue
be zero given that the queue (or system) size is K.

In (22) A1 is an nd× nd matrix and is computed by
(23):

A1 =


0 0 . . . 0 Ha,0

I 0 . . . 0 Ha,1

0 I . . . 0 Ha,2

...
...

...
...

0 0 . . . I Ha,d−1

 . (23)

Also,B1 is an n× ndmatrix calculated in a recursive way
as given in (24):

B1 =
[
B1,1 B1,2 . . . B1,d

]
,

B1,1 = I,

B1,i = qa,d−iI −
i−1∑
j=1

B1,jHa, d− i+ j i = 2, 3, ..., d.

(24)
Finally, C1 is an nd× n constant matrix.

C1 =


I
0
0
...
0

 . (25)

For the case that K ≤ x ≤ K + 1 in (22), the nd× nd
matrix A2 is given by:

A2 =


0 0 . . . 0 Ga,0

I 0 . . . 0 Ga,1

0 I . . . 0 Ga,2

...
...

...
...

0 0 . . . I Ga,d−1

 , (26)

where Ĝa is computed by (27):

Ĝa(s) =(sI + (D0 +D1))Q̂a(s) =

sdI +Ga,d−1s
d−1 + ...+Ga,1s+Ga,0.

(27)
Vector y0,K is given by solving linear equation (28):

y0,KB1e
A1KeA2C1 = π, (28)

where π is the stationary probability vector of being in
each state. For given matrices A1, B1, C1, A2, and vector
y0,K , waiting time vector for MMPP/D/1/K queue can be
calculated using (22).

Having the waiting time for each state, the CDF of
waiting time for the system, i.e., for all states, W (x)
is computed by W (x) = w(x)e, where e is the unitary
column vector. Also, the loss probability Ploss is obtained
from

Ploss =
(π − w(K))D1e

λ̄
, (29)

where λ̄ is the mean arrival rate.
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